Q@
e RedHat
Enterprise Linux @

Optimizing memory
bandwidth by exploring
cache utilization efficiency at
a sub-cacheline level

William Cohen Ben Woodard

Performance Tools Engineer Senior Principal Consultant

CONFIDENTIAL Designator

Registers & Cache

Regqisters - as fast as processors
Lots of work goes into register optimization within compilers
Variables move over course of function - location lists

ABIl adds constraints

Cache - still very fast.
Optimization done almost exclusively in the source not by the compiler
Always transferred in lines - often 64 bytes
Costin die size & power

Very limited resource

CONFIDENTIAL Designator

Memory

Memory bandwidth hamstrings processor's capability
Bandwidth impact of selecting address.
Streaming through columns the fastest

Impact of changing rows - vector operations

CONFIDENTIAL Designator

all those maps

#pragma omp target teams map (alloc: a, b, ¢, d, u, indxp, jndxp, rho i, gs) \

num_teams ((npl+127)/128)
fpragma omp target

#pragma acc parallel num gangs (n3-2) num workers(8) vector length (128)
map (tofrom: ou[0:n3*n2*nl]) map(tofrom: ov[0:n3*n2*nl]) map(tofrom: or[0:n3*n2*nl])
is device ptr(ul, u2)
Not just moving data
Restructuring data
Linearizing

Optimizing stride

Memory & Cache

The problem with C/C++ structs & classes

Each cache miss transfers a full 64B cacheline. How much of that data is being used?
A hot cacheline may only have 8B being used.
(the other 56B could be wasted bandwidth)

Read to write

Pointers indirection (pointer following)

Structure of arrays vs. arrays of structures
The problem with STL (and even PSTL) containers and algorithms.
Programmer conceptual organization vs optimal memory access

Strides

CONFIDENTIAL Designator

CONFIDENTIAL Designator

Quest: Mem bandwidth
efficiency

How much of the cache is actually being used? How much memory bandwidth is being used to transfer useful data?
Cache is SRAM very power hungry (vs DRAM)
Power cost of moving bits
Increase efficiency :
Increase speed - processor waits less often
Reduce power

More effective memory bandwidth

CONFIDENTIAL Designator

First attempts:

No performance counters - Cache miss an approximation but not a good one.
Only a few bytes in within a cache line

Pahole - analyzes data structures using DWARF based on cachelines

Valgrind’s cachegrind, HPC Toolkit to identify target regions

Data attribution problem

CONFIDENTIAL Designator

Rosetta Stone (Debug Info)

Debug info provides:
Mapping between source code lines and machine instructions
Information for unwinding the stack to get backtraces
Location information for variables
Physical layout of various data structures
Due to its utility by default Red Hat generates optimized debug info and extracts it into debuginfo RPM

(Leave optimization on, GCC has better quality of debuginfo for optimized code)

CONFIDENTIAL Designator

Static Analysis of data structs

Looking for bytes in data structures that force alignment but hold no useful data
The padding bytes will consume memory bandwidth as data moved between RAM and CPU
The dwarves pahole tool:
Uses the debuginfo to determine struct layout
Developed by linux kernel engineers to examine data structure layout
Find related struct fields in different cache lines

Find unused regions in data structures

CONFIDENTIAL Designator

Pahole Example from [ulesh?2.0

class Domain {
public:

void Domain (class Domain *,Int t,Index t,Index t,Index t,Index t,Int t,Int t,Int t,Int t);

void ~Domain(class Domain *, int);

real t * commDataSend; /* 0 8 %/

/* —--- cacheline 7 boundary (448 bytes) was 8 bytes ago --- */

class vector<double, std::allocator<double> > m y; /* 456 24 */
class vector<double, std::allocator<double> > m z; /* 480 24 */

Pahole Example (continued

b

Int t m cycle; /*

/* XXX 4 bytes hole, try to pack */

/* —-- cacheline 25 boundary (1600 bytes) --- */
Real t m dtfixed; /*
Index t m planeMax; /*

/* size: 1744, cachelines: 28, members: 104 */
/* sum members: 1740, holes: 1, sum holes: 4 */

/* last cacheline: 16 bytes */

1592

1600

1740

4

8

4

*/

*/
*/

CONFIDENTIAL Designator

CONFIDENTIAL Designator

Drawbacks of pahole analysis

Static analysis:
No information about actual amount of wasted memory/bandwidth
No information about which members have temporal locality
Explicitly named fields assumed accessed:
Wouldn’t catch unused element in float4 used to store 3d info (cuda particles example)
Only examines structs, no analysis of adjacent variables or array element access
Assumes struct starts at beginning of cacheline (might not be right for malloced or stack locals)

Intentional padding might improve performance (for example unrelated locks in separate cache lines)

& RedHat

CONFIDENTIAL Designator

Dynamic Analysis

Valgrind framework has instrumentation for:
Memory allocation, heap profiling, thread debugging, and cache simulation
Callgrind tool “spatial loss” metric (Weidenforfer and Breitbart 2016)
Cache simulator tracks cache line byte accesses
When cache line evicted note number of bytes unaccessed in cache line
Attribute unused bytes to the location where cache line initially loaded (not where evicted)

Kcachegrind tool reads callgrind data and maps data back to lines in source code

CONFIDENTIAL Designator

Cache efficiency and Spatial loss

Get an estimate of how much of the cache space is unused (wasted):

Waste = (spatial_loss)/(bytes_per_cache_line*cache_misses)
Example:

Splossi: 23,312,824,492 bytes

Cache line: 64 bytes

Cache misses: ITmr: 791,680 D1mr: 2,538,385,921 DImw: 949,383,013

Cache misses total: 2,634,115,614

23,312,824,492 bytes/(64 bytes*2,634,115,614) = 13.8% waste

Callgrind Disadvantages

Very slow:
Instrumentation makes thread >100x slower than native
Valgrind serializes threads, so native 8 threads in parallel another 8x slower
Spatial loss metric missing information to compute wasted memory read/write bandwidth

Kcachegrind data presentation focuses where in the code rather where in the data

CONFIDENTIAL Designator

Cache bytes Use-Def tracking

Want to split callgrind access tracking into:

Use bytes (bytes in cache where the value is read from memory)

Def bytes (bytes in cache where the value is written to memory)
A read after a write (Def) does not count as a Use, the value not read from memory
Compute bandwidth waste in manner similar to spatial loss for cache line:

Read (use_byte>0) ? (line_size_bytes - use_bytes): 0

Write (def_byte>0) ? (line_size_bytes - def_bytes) : 0

CONFIDENTIAL Designator

CONFIDENTIAL Designator

Memory Bandwidth Calculations

Wasted read bandwidth:

Sum(Use_bytes)/(cache_line_bytes * loaded_lines)

Wasted write bandwidth:

Sum(Def_bytes)/(cache_lines_bytes * modified_lines_evicted)

Mapping Info to Data structs

Kcachegrind maps information to lines in source code
Which variable in the following complex expression is the problem? hxx? hourgam? zd?
hxx[1] = hourgam[0] [1i] * zd[0O] + hourgam[1l][i] * zd[1l] +
hourgam[2] [1] * zd[2] + hourgam[3][i] * zd[3] +
hourgam[4][i] * zd[4] + hourgam[5][i] * zd[5] +
hourgam[6] [i] * zd[6] + hourgam[7][i] * zd[7];
Want to map the data to the variable/field accessed

Make use of the debuginfo column information in generated by default in GCC 8

CONFIDENTIAL Designator

Inverted location lists

DWARF designed for source debuggers: map f(variable name, IP) -> [ocation of variable
Need: instruction i.e. IP -> operands (memory or registers) -> variable being addresses
Compiler has info but not emitted ”Too big” “not needed”

DWARF it ain’t just for GDB anymore

Several uses: Cache Locality and efficiency, data attribution

Challenges: arrays and indexing, interprocedure, compiler optimizations

CONFIDENTIAL Designator

20

Future Work

Implement def-use cache line tracking in Valgrind
Implement debuginfo column use in Valgrind/kachegrind
Explore better alternatives to map data back to variables and struct fields

Techniques for cache allocation similar to traditional compiler register allocation

CONFIDENTIAL Designator

21

Further Information

Dwarf debuginfo - http://dwarfstd.org/

Pahole tool - https://github.com/acmel/dwarves

Valgrind/Callgrind

http://www.valgrind.org/

Inclusive Cost Attribution for Cache Use Profiling (Weidendorfer and Breitbart 2016)

CONFIDENTIAL Designator

http://dwarfstd.org/
https://github.com/acmel/dwarves
http://www.valgrind.org/

